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ABSTRACT 

The technique of image compression using Iterative Function System (IFS) is 

known as fractal image compression. An extension of IFS theory is Partitioned 

or local Iterative Function System (PIFS) for coding the gray level images. Several 

techniques of PIFS based image compression has already been proposed by many 

researchers. The theory of PIFS appears to be different from the theory of IFS in 

the sense of application domain. In the present article we have proposed a math- 

ematical formulation for the existence of the attractor of PIFS, assuming it as a 

separate scheme, in the context of image compression . It has been shown that the 

attractor is an approximant of the given target image. The experimental results 

have also been presented in support of the theory. The experimental results have 

been obtained by using a GA based PIFS technique proposed by Mitra et al [1]. 

1     Introduction 

The theory of fractal based image compression using Iterative Function System 

(IFS) was proposed by Barnsley [2, 3]. He modeled real life images by means 

of deterministic fractal objects i.e., by the attractor evolved through iterations 

of a set of contractive affine transformations. Once the set of contractive affine 

transformations J- (say) is obtained the rest is an iterative sequence of the form 

{^r/vr((9)}Ar>o, where "O" is an initial object to start the iterative sequence. The 

set of contractive affine transformations T is called IFS. In particular at the Nth 

iteration, the object Ox is used as input to the IFS, where Ojv is the output object 

obtained from the (iV — \)th iteration. The detailed mathematical description of 

the IFS theory and other relevant results are available in [2, 3, 4, 5, 6]. 

Image compression using IFS can be looked upon as an inverse problem of iterative 

transformation theory [7]. The basic problem here is to find appropriate contrac- 

tive affine transformations whose attractor is an approximation of the given image. 

Thus for the purpose of image compression it is enough to store the relevant pa- 

rameters of the said transformations instead of the whole image. This technique 

reduces the memory requirement to a great extent.   But the question is how to 



construct the transformations for a given image. A fully automated fractal based 

image compression technique of digital monochrome image was first proposed by 

Jacquin [7, 8, 9]. This technique is known as partitioned [10] or local [3] iterative 

function system. The partitioned/local IFS is an IFS where the domain of appli- 

cation of the contractive affine transformations is restricted to the small portions 

of the image (subimages) instead of the whole image as in the case of IFS. In PIFS 

the given image is first partitioned into non overlapping square blocks. In encod- 

ing process, separate transformations for each square blocks are then found out on 

the basis of their similarity with other square blocks. These blocks are large in 

size and are located any where within the image support of the given image. As 

the transformations are applied partition wise the scheme is known as partioned 

IFS. Again as the similarity of square blocks are found out locally it is also known 

as local IFS. Different schemes, using PIFS, have been proposed by several other 

researchers [10, 11, 1, 12]. 

The theory of partitioned/local IFS appears to be different from the theory of 

IFS in the sense of restriction of the application domain for the contractive affine 

transformations. So, the questions are, how does PIFS produce an attractor and 

how does it become a close approximant of the given target image. Generally, PIFS 

is considered as a simple extension of IFS and. it is assumed that the Theoretical 

foundation of PIFS is same as that of IFS. The present provides a mathematical 

formulation for the existence of an attractor of partitioned IFS, assuming it as a 

separate scheme, in the context of image compression. In particular, firstly we 

have shown that the transformations, in the PIFS scheme, give rise to a fixed 

point (attractor). Secondly, it has been shown that the transformations, though 

not exactly contractive, are eventually contractive. Finally, we have proved the 

attractor and the given image are very close to each other in the sense of a chosen 

metric or distance measure. 

In the next section we have described the theory of image coding using IFS. Sec- 

tion 3 consists of basic features of constructing PIFS codes for a given image. 

Section 4 deals with the basic difference between IFS and PIFS techniques. The 

proposed mathematical formulation of PIFS has been discussed in Section 5. The 

experimental results have been presented in Section 6 and the conclusions are 



drawn in Section 7. 

2    Theoretical Foundation of Image Coding By 

IFS 

The salient features of IFS theory and image coding through IFS are given below. 

Let (A, d) be a metric space, where A" is a set and d is a metric. Generally, A' is 

taken as the collection of compact sets and d is taken as distance measure between 

two sets in A. Let / be a contractive affine map defined on metric space (X,d) 

such that / : X -> X and d(f{x1),f(x2)) < s d{xux2); Vxux2 6 X, where 

0 < s < 1 is called contractivity factor of the map /. For any large positive 

number N,   lim fN(x) = a, \/x 6 X, and also f(a) = a. "a" is called fixed point 
JV-*oo 

(attractor) of /. Here    fN(x) is defined as 

fN(x)  =  /( /Mz) ), with /*(*) = /(*), Vx € X. 

Now, let / be a given image which belongs to the set X. Our intention is to find 

a set T of affine contractive maps for which the given image / is an approximate 

fixed point. T is constructed in such a way that the distance between the given 

image and the fixed point (attractor) of T is very small. To any set S belongs to 

A', the set of transformations F is used as follows; 

i 

The attractor UA" of the set of maps T is defined as follows : 

lim TnU) = A,   VJ 6 A, 
N—KX> 

and ^"(A)  =  A,    where FN(J) is defined as 

TN(J)   =   ^(^-1(J)),with 

F\J)   =   ^(J),   VJ6A. 

Also the set of maps T is defined as follows; 

d{^(J1)^(J2))<sd(J1,J2); VJltJ2eX    and    0<5<1. (1) 

4 



s is called the contractivity factor of T. 

Let d{I,F(I))<e (2) 

where e is a small positive quantity. Now, by Collage theorem [2], it can be shown 

that 

d(I,A)<-^- (3) 
I — s 

where A is the attractor of F. 

From (3) it is clear that, after a sufficiently large number(iV) of iterations, the set 

of affine contractive maps T produces a set which belongs to X and is very close 

to the given original image /. Here, (X, F) is called iterative function system and 

T is called the set of fractal codes for the given image I. 

In the context of digital monochrome image, the coding scheme is called partitioned 

or local Iterative Function System. In the next section, the construction of PIFS 

codes has been described. 

3     Construction of PIFS Codes 

The structure of PIFS codes are almost same as that of IFS codes. The only 

difference is that PIFS codes are obtained and applied to a particular portion of 

the image instead of the whole image. 

Let, / be a given image having size w x w and the range of gray level values be 

[0,<7J. Thus the given image J is a subset of IR3. The image is partitioned into n 

non overlapping squares of size, say 6x6, and let this partition be represented by 

% = {7^.1,7^-2? • • • ,^-n}- Each 7l{ is named as range block. Note that n = j x j. 

Let V be the collection of all possible blocks which is of size 26 x 26 and all are 

within the image support. Let V = {T>i,T>2, • • • ,T>m}. Each Vj is named as 

domain block with m = (IU — 26) x (w — 26) and Vj C [0,w] x [0,iu]. 

Let, 

J-j = {/ : Vj —> IR3 ;   / is an affine contractive map}. 

Now, for a given range block 7£,-, let, /,-jj G Tj be such that 

dpii, fiy(Vj)) < d{Hi, f(v3)) v/ e Th VJ. 



Now let k be such that 

d{Ki, fa{Vk)) = min{ d{Ki, fa{Vj)) } (4) 

Also,   let        fi\k{Vk) = Ki\k. 

Our aim is to find U\k{Vk) for each i e {1,2, • • •, n}. In other words, for every range 

block 1Zi, one needs to find an appropriately matched domain block Vk as well as 

an appropriate transformation fa. The set of maps T - {/i|., /2|., • • • > /«!•} tnus 

obtained is called the partitioned or local IFS or fractal codes of image I. 

To find the best matched domain block as well as the best matched transformation, 

we are to search all possible domain blocks as well as all possible transformations 

with the help of equation (4). The Problem of searching appropriately matched 

domain block and transformation for a range block has already been solved by 

enumerative search [8] and by using Genetic Algorithms [1]. 

The affine contractive transformation /,-|, is constructed using the fact that the 

gray values of the range block are scaled and shifted version of the gray values 

of domain block. The contractive affine transformation fa defined on Et3 is such 

that faCDj) —» Hi. Also fa consists of two parts, one for spatial information and 

the other for information of gray values. The first part indicates which pixel of the 

range block corresponds to which pixel of domain block. The second part is to find 

the scaling and shift parameters for the set of pixels of the domain blocks to the 

range blocks. 

The first part is shuffling the pixel values of the domain block and can be achieved 

by using any one of the eight possible transformations (isometry) on the domain 

blocks[8, 11]. Once the first part is obtained, second part is estimation of a set 

of values (gray values) of range blocks from the set of values of the transformed 

domain blocks. These estimates can be obtained by using the least square analysis 

of two sets of values [11, 1]. 

The second part is obtained using least square analysis of two sets of gray values 

once the first part is fixed. Moreover the size of the domain blocks is double that of 

the range blocks. But, the least square (straight line fitting) needs point to point 

correspondence. To overcome this, one has to construct contracted domain blocks 



such that the number of pixels in the contracted domain blocks become equal to 

that of range blocks. The contracted domain blocks are obtained by adopting 

any one of the two techniques. In the first technique the average values of four 

neighboring pixel values in a domain blocks are considered as the pixel values of 

the contracted domain blocks [8]. In the other scheme, contracted domain blocks 

are constructed by taking pixel values from every alternative rows and columns of 

the domain blocks [11, 1]. 

Now to select appropriately matched domain block (T>k) and appropriately matched 

transformation (fi\k) for a range block (Hi), the distance measure "d" plays an im- 

portant role. The distance measure "<f' [used in equation (4)] is taken to be the 

simple Root Mean Square Error (RMSE) [or Mean Square Error (MSE)] between 

the original set of gray values and the obtained set of gray values of the concerned 

range block. Let TZi(p,q) and 7li\k(p,q) be respectively the original and the ob- 

tained values of the (p, q)th pixel of the range block 7£;. Thus, the expression for 

RMSE will be 

d(Kii   Tli\k)   = „\i:\i: {*.■&>>«) - MP^)?- 

The RMSE is not a metric though it serves the purpose of a distance measure. As 

selection of PIFS code for a range block is dependent only on the estimation of pixel 

values of that block, it is enough to calculate only the distortion of the original and 

estimated pixel values of the block. The first part of the PIFS code indicates pixel 

to pixel correspondence of the contracted domain block and the concerned range 

block. So, this part of the transformation is fixed for every iteration. Only the 

gray values of the range block are being changed through iteration. Thus, RMSE 

is taken as the distance measure. Note that the same measure had been used in 

all most all the articles [8, 10, 11, 1, 12]. 

4    How PIFS technique differs from IFS 

An extension of the iterative function system concept is the partitioned iterative 

function system.   PIFS mainly differs from IFS in the domain of application of 



their respective transformations. In PIFS the transformations are not applied to 

the whole image, as in the case of IFS, but rather have restricted domains. In all 

PIFS, a transformation /,- is specified not only by an affine map, but also by the 

domain to which /,- is applied. 

The difference in the domain of application of the two techniques is shown in Figure 

1(a) and Figure 1(b). Three affine contractive transformations are applied on the 

image I0 to result in an image which consists of three parts J01, 702 and I03 (Fig. 

1(a)). These three transformations are then applied sequentially to result in a fixed 

point (attract«*). The set of transformations {fuf2,f3} is called the IFS, and the 

attractor of this set of transformations in this case is Sierpinski gasket [2]. 

Contrary to the above, Fig. 1(b) is showing that in PIFS the map fiy is applied to 

the domain P^o result in ft,-, which is an estimate of ft,-. In the next iteration, 

this estimate (ft,) is not used as the input to the map /,b. In particular in the 

next iteration an estimate of Vj is used as the input to obtain improved estimate, 

ft,-, of ft,-. A domain block includes many other range blocks or part of them (Fig. 

1(b)). So, the estimate of Vj consists of several other estimated range blocks or 
part of them 

Another important and significant difference of PIFS and IFS lies in the context 

of contractivity factor of the transformations. For an IFS with an expansive map 

/,-, the set of maps will not converge to a compact fixed point. The expansive 

part will cause the limit set to be infinitely stretched along some direction. This 

is not necessarily true for a PIFS. PIFS can contain expansive transformations 

and still have a bounded attractor. So, it is not necessary, in PIFS, to impose 

any contractivity condition on all the transformations. A sufficient contractivity 

requirement is that the set of transformations ? be eventually contractive [10]. 

Fisher et al [10] have shown experimentally that maximum allowable value of s 

(contractivity factor) can be 1.5 (> 1). Also they have shown that this maximum 

value of s, for a particular image, yields minimum distortion between the original 

image and the attractor evolved through the iterative process of the eventually 
contractive transformations. 

In the next section we have described the mathematical formulation of attractor 

of PIFS, where the meaning of eventually contractive maps has been defined. 



5    Mathematical Formulation of PIFS 

In this section we have proposed a mathematical formulation of PIFS. To make it 

convenient we have divided our tasks into three stages. Firstly, it has been shown 

that the PIFS code {J-) possesses a fixed point or attractor in iterative sequence. 

Secondly, the eventual contractivity of the maps in PIFS setup has been proved. 

Finally, it has been shown that the given image and the attractor are very close to 

each other in the sense of a chosen distortion measure which is root mean square 

(RMSE). 

Let, / be a given image having size w x w and the range of gray level values be 

[0,g]. For this given image we can construct a vector x whose elements are the 

pixel values of the given image /. Note that there are w2 pixel values of /. Thus, 

X    =    (Xi,       X2,       X3,       ...       ,XW2) 

is the given image where xi is the pixel value corresponding to the (1, \)th position 

of /. Likewise, let xT be the pixel value corresponding to the (i,j)th position of 

/, where,   r  —   (i  —  1) w + j,     1    <    i,   j    <    w. 

In this setup PIFS can be viewed as following.'There exists an affine (linear), not 

necessarily strictly contractive, map for each element of x and this map is called 

forward map of the element. In the process of iteration, the input to a forward map 

will be any one of the w2 elements of x and the map is called backward map for 

this input element. Thus for each element of x there exists a forward map and an 

element of x can have one or more or no backward map(s). The set J-', of forward 

maps, is called the PIFS codes of /. 

Now let us consider the set S where, 

S    =    { x   |  x  =  (xu    x2,    x3,    ...     ,xw2)' ,      0  <  Xi  < g   }. 

S is the set of all possible images. The given image / is surely an element of S 

i.e.  I    G    S. The PIFS codes T can be looked upon as 

T   :    S    -*    S   . 

The attractor of T, a (say), if exists will also belongs to S. So, the first task is to 

show the existence of a. 



Let /i be the forward map for a particular element xn , where r\ = {i\ — l)w+ji • 

Also let this element be mapped from the element xT2 ( r2 = (i2 — 1) w + j2 ) . 

Thus fi is the backward map for xr2 . Again x?f is being mapped from 

xr3, (r3 = (i3 — l)w + J3) with a forward map /2 . Thus we have a sequence of 

maps for the element  xTl   as following. 

(«1, Ji)   £"   (»a. ia)   ^   (»3, js)   £   •••'?=1   (im, im);    ™ <  {w2 - 1) . 

(5) 

The above sequence will be stopped at   ( im, jm )  if 

( im+u jm+i )    =    ( *'*, Jk );    for  k  =  0  or  1   or  2  or   •••   or  m.      (6) 

The stopping phenomenon of this sequence is mandatory as there are finite number 

( w2 ) of elements in x . Moreover all the elements of x possess same type of 

sequence in PIFS codes. Thus it is enough to show that the element xri has got 

a fixed point in the process of iteration and this will lead to prove the existence of 

a    (attractor of 1), 

It is clear from the sequence (5) that during the iterative process the element xn 

will have a fixed point once the element xT2 is fixed. Again the convergence (to a 

fixed point) of the element xTi confirms the convergence of the element xr2 and 

likewise for the rest of the elements. Thus convergence of the last element of the 

sequence implies the convergence of the rest of the elements. The convergence of 

the last element of the sequence is possible in four different ways according to the 

stopping condition (6). 

An important point to be noted in this context is the problem of discretization. 

To get the decoded image in an iterative process using PIFS codes one need to 

discretize the output. This can be done in two ways. One is discretization of 

the output in each iteration. Another is discretization at the end of the iterative 

process. The iterative process is stopped whenever there is no change in gray 

values in two successive iterations. To prove the convergence of the elements in 

four different ways we have used the discretization of the second type. 

Case 1 :     m   —    \. 

Here    ( i2, j2 )    =    ( t'i, ji ) . 

It implies that    ( ii, ji )   is mapped into itself with a map  f\ . 

10 



Here   fx  = ax x + bx ;   0  < x  < g    and 0  < ax  <  1. 

Note that in this case the affine map fx should necessarily be a strictly contractive 

map otherwise the element will not converge to a fixed point. 

If we start with any value (0 < a; < g ) of ( »i, ji ) , the element will converge 

to the fixed point   x *'     . 

Case 2 :     m  >  0      and      k — m 

Here    ( im+i, jm+\ )    =    ( 4, jm) ■ 
It implies that   ( im, jm)  is mapped into itself with a map  fm  =  am x + bm   ; 

0  <  x  < g and 0  <  am   <  1 . Thus  ( im, jm)  will converge to  ^^ . Once 

( im, Jm)  is fixed at   r%- , the element    ( im_i, jm_i)  will be fixed at 

öm-1  &m      ,     ,                         Om-1  ^>m    —   Am &m-l    +   ^m-1 
 T-   Om-1     =      ^ • 

1 — am l-flm 

In this case the forward map is /m_i = am_i x + 6m_i ; 0 < x < g . Again 

( im-i, jm-i ) is fixed implies convergence of ( im-2, jm-2 ) with forward map 

fm-2   =   O-m-2 x  +  6m_2 5    0   <   x   <   g , at 

«m-2  am-\   bm    —   Qm-2 am ^m-1    +   Qm-2  ^m-1    ~    Qm  Om-2    +    Om-2 

1   - aro 

Proceeding in this way, the fixed point of  ( i1; ji )   is found out to be 

"1 "2   ■■■   "m-l  fcm   +   ("1 "2   ■■■   °m-2 bm-l   +   °1 "2   ■••   "m-3 bm-2   +   •■•   + "1  "2 63   +   "1  b2   +   bl) t1   ~   ""») 
1   -   am 

Note that in this case the affine map   fm   should necessarily be contractive in 

strict sense. But the rest of the maps need not be strictly contractive. The eventual 
m 

contractivity, associated with the element  xri   =  (ii , ji) , will be sri   =  JJ a8- . 

Case 3 :     m  >  0       and      k =  1 

Here    ( im+1, jm+1 )    =    ( «i, ji) . 

It implies that the starting and the last element of the sequence (5) is same. This 

can be looked as a complete loop for the sequence.   This case has been solved 

stepwise. First of all the case is solved for m   =   2, and m   =   3 . Then on the 

basis of these the fixed point for the case of general m is solved. 

Case 3(a) :     m  =  2 

Here we have only two elements viz.    ( il5  j\ ) and ( i2, ji) . The element 

11 



( H, ji ) is being mapped from the element ( i2, j2 ) by the affine map 

/i = ax x + bx ; 0 < x < g . On the other hand the element ( i2, j2 ) is 

being mapped from ( ix, jx ) by the affine map f2 = a2 x + b2 ;   0  < x  < g . 

( *'i, ii )    £-   ( t2, j2)    &-   ( «i, jx ) • 

Let a; be the starting value of ( ix, jx ) and y be the starting value of ( i2, j2 ) . 

After first iteration the values of ( ix, jx ) and ( i2, j2 ) will be ax y + bx and 

a2 x + b2 respectively. Again after second iteration these will be ax a2 x + ax b2 + bx 

and a2 ax y + a2 bx + b2 respectively. Proceeding this way after infinite (practi- 

cally large but finite) number of iteration, the fixed point of (ix , jx) and (i2 , j2) 

will be independent of x and y. The Coefficients of x and y after N (even) itera- 

tions will be (ax a2)
Nl2 which tends to zero as N tends to infinity. The fixed points 

°f  ( Hi j\ )  thus will be 
ax b2 + bx 
1  - ax a2 ' 

The same for the element   ( i2, j2 )   will be 

«2 fri  +  b2 

1  — ax a2 

Note that both the maps need not be contractive. Moreover the eventual con- 

tractivity associated with the element xri is (ax a2) which should be less than 

one. 

Case 3(b) :     m = 3 

Here we have three elements viz. ( t'i, jx ) , ( 12, J2 ) and ( t3, j3) . These three 

elements are making a complete loop in the sequence. The sequence of forward 

and backward maps is as follows; 

(«1. Ji)    £-    (12,32)    £    (is, is)    ^    (*i, jx)- 

Taking the starting values of three elements as x, y and z and proceeding as case 

3(a) we have the following results. 

The fixed point of (ix, j\)  will be 

«i ( «2 63 + b2 ) + bx 
1  — ax a2 03 

12 



The element   ( i2, j2 )   wm converge to 

«2 ( «3 fri  + h ) + b2 

1  — ai a2 «3 

The fixed point of ( t3, J3 )  will be 

«saw*».,., M3 ( ai b2 + b\ ) + 63 
1  —  ax a2 a3 

Here also the maps need not be contractive in the strict sense.   The eventual 

contractivity will be  (ai a2 a3)  in this case. 

Case 3(c) :    General  m 

Here we have m elements which are making a complete loop of sequence. It is clear 

from case 3(a) and case 3(b) that all the elements of this sequence will have a fixed 

point after a large but finite number of iteration. Also the affine maps which are 

used, need not to be contractive. In particular, in this case the element  ( i1? ji ) 

will converge to 

ai (q2 ( ... (qm-2 (flm-i bm  + 6m-i) + frm-2) + ■■■) + 62) + 61 

1 — a\ a2 ... am 

m 

Also the eventual contractivity for the element is   sri   =   JJ a; . 
t=i 

Case 4 :     m  >  0      and      0  <  k  <  m 

Here    ( zm+1, jm+1 )    =    ( ik, jh) , where  k =  2 or 3 or ... or m - 2 . 

Without loss of generality say,   1   <   k  =  m0   <  m — 1 . 

This case can be viewed as mixture two cases. Taking ( imo, jmo )  as the starting 

element, a complete loop of sequence can be formed with rest of the elements. 

Thus, one can find the fixed point of this element as it is nothing but case 3. Once 

the element    ( »mo, jmo )   is fixed then the fixed point of the original starting 

element   ( i\, jj )   can be found out by using case 2. Like all the previous cases 
m 

the eventual contractivity, in this case, will be  sn   =  JJ a, . 
1=1 

The above stated four cases provide the fixed point of the PIFS codes T. Thus for 

a very large positive number N, we have  J~N(o)  —►  a  V o  €   S . So, 

VLm^FN(o)  = a,    VoZS (7) 

Also, 
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=     lim fN+1(o);      VoG5. 
AT-*oo 

=    a . 

Note that for each element there will be a sequence of the form (5). This sequence 

will follow any one of the above mentioned four cases. Thus for each element there 

will be a sequence of forward maps. The contractivity factor associated with this 

element will be the product of all the scaled parameters ( a,- ) of the forward maps. 

The next task is to define, mathematically, the eventual contractivity of the PIFS 

codes. In this context we are stating the following theorem. 

Theorem 1 : Let T be the PIFS codes and S be the set of all possible images. 

For every x and y,  x^y_£.S3N>0 and  0  <  s  < 1   such that 

I Fix)    -   Fq(l) \    <    s\x    -   i\;    Wp,q>N. 

Proof : Using equation (7) we have for a very small positive number e > 0 , 3 

a large positive number N\ such that 

p > A\ =» | .P(x) - a | < | ; V x <E 5. 

Also,   3 another large positive number iV*2 such that 

q > N2 =* \F(y) - a\ < i- \/ye S. 

Thus for x  ^  y_ £   S , 

I ?>(x)    -   fq(z) I    =    I Fp{x)  -a + a- J*{y) |. 

< \fp{x) - a\  +  \P>{y) -a\. 

< e ;   where ,   p, q >  N =  Max (Ni, N2). 

Thus, for  x  ^  y, 3 a large number N and    0   <   s   < 1   such that 

p, q  >   N    =»    | P'ix)    -   ^(y) |    <    s\x    -   y_ \ .      Q.E.D. 

Once the eventual contractivity of the PIFS codes T has been proved the last task 

is to show that the given image and the fixed point of !F are very close to each 

other. 
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Theorem 2 :     Let a be the fixed point of the PIFS codes T and x be the given 

image. Also let V be the given distortion measure. Under this setup, if 

d( x , ^(x))  <  a 

then 

d( x , a )    < 
■*■ Smax 

Where smax = Max {su s2, ... ,sw2} , s{ being the eventual contractivity of 

the  ith  element of x . 

Proof:     Let 

x -      (Xi,   X2,   ...   ,XW2)' 

F(X)   = (xi, xi,... ,f^)' 
^(s)   =   (g, g, ... ,f5)' 
^3fe) = (xi, xi,... ,x5)'. 

In the PIFS scheme, the given image is partitioned into range blocks 7£t- of sizes 

6x6. So, there are n = (f f range blocks each having b2 pixel values. Pixel values 

are nothing but the elements of x. Also the distortion measure "cT is Root Mean 

Square Error (RMSE). "<T , defined on S, is as follows 

d( M. , v )   = 
\ 

I       u/2 

w ,-=l 

X] d(u{ , Vi)    V  u , v   6   S. 

Where,     d ( «,- , «,- )   =   |«,.  _ V|.|2 . 

Now, 
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<*( i. ^te))  = 
N 

\ 

< 
\ 

^J2d {xi , /ifo-)); 
t=i 

fa is being mapped from a- with forward map /,-.] 

•=i 

jjy XI Maz.fa  - 5^|2. 
«=i 

N £ E (a)2^    where, a  =  Afaar,-€{li2 „2} |xt-  - £-| 

<    a 

Again, 

<*( £ , ^(=0 )   = 
\ 

I A   1  £ 
n  2^  ft? E   J( «ili > /j|.-(«*|/)) ,     [as  w2  =  nb2] 

«—l        j=i 

where, *,-,,. is the jth pixel value of ith range block and  /,-,,.  is the forward map 

associated with Xjli which is being mapped from *,„ , the kth element of I* ra 
block. 

range 

Thus 

N 
1    n    1    *2 

^ E TJ E   d( Xj\t , /j-i.-Ca?*!,)) 

It implies that 
N 

l A  l 62 

n E 7i E rf( ZJK , a;i|i). 
»=1 j'=l 

1    n    1    6* 
n E IT E   rf( «ilf > §)   <  o 

« = 1      0 7 = 1 

Again, 

«WaO , •?%)) = 
N 

1 A   1   62 

„ E 7j E d( fMxkv), /j|.(^)). 
» = 1 7 = 1 

(8) 

Note that the size of the range block and the contracted domain block [from where 

this range block is being mapped] is same (Section 3).   Moreover the number of 
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range blocks and the number of matched contracted domain blocks is same as there 

is only one matched contracted domain block for each range block. Also for each 

element there is an eventual contractivity factor and smax is the maximum of 

these factors. 

So, 

<        Smax    Ct . [By    (8)3 

62. 1      n      1 
\:EüE d( xk\i> *k\i) 
\ n i=i ° k=\ 

Similarly, 

d{^(x.) , Fix) )   = 
N 

62 

I 1    n    1 —- 

< Sr 

fc2 
1        n I . . 

\ " i=i u k=i 

I   "   l   62 —. 
\:EüE 

rf( Ai'l^k)> fk\i{xP\q)) 

[where  a;^;   is being mapped from  £p|g 

with forward map  f^i } 

<     s2 
— max 

b2 

1       U       1 
\ ~ z^ H Z^   ^( aVl<? ' X

PI<?) 
N 9=1 P=l 

< sLx  « .        [By  (8)3 

So, finally we have 

d ( x , a )    =    d ( x , /imyv-^oo ^(fi) ) ;   V o €   5 

=    d ( £ , /im*-«, JF^X) ) ;       [by 77» eorem 1} 
< d(x,F(x)) + d(F(x) , ^2(x)) + 4^2(x) , f3(x)) + .... 
= a + smax a + *£,„. a + ...   . 
= a ( 1  + 5mar + s2^ +  ... )   . 

= rf— • Q. E. D. 

In the next section we have presented the experimental results in support of the 

mathematical formulation of PIFS. 
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6    Experimental Results 

In the context of PIFS, a technique for fractal image compression using Genetic 

Algorithm (GA) has been proposed by Mitra et al [11, 1]. Using this technique, the 

PIFS codes for 256 x 256, 8 bits/pixel "Lena" image and "LFA"(Low Flying Air- 

craft) image has been found out. Both images have been reconstructed iteratively 

starting from different images. In particular we have used a "Blank" image (having 

all the gray values zero), "Rose" image, "Lena" image and "LFA" image as start- 

ing images. At the time of reconstruction, RMSE (distortion measure) between 

two successive iterations has been computed. In all the cases, computed values of 

RMSE are gradually decreasing with the increasing iteration number. It has been 

found that the PIFS codes almost achieved a fixed point after ten (10) iterations 

in both the images. Finally, the distance (RMSE), as it is expected, between the 

given image and the attractor is found to be very small. The distances are found 

to be on an average 7.75 and 11.44 for "Lena"image and "LFA" image respectively. 

The computed values of RMSE have been presented in tabulated form in Table 1 

and Table 2. The notation Aij used in the tables implies the RMSE value between 

ith and jth iterations. Thus we have 

AU = d (r{o), .p'(fi)), 

where T is the PIFS codes used and o is the starting image. As we have stopped 

the process of iterations after 10 iteration, so the value of Ao,io provides the dis- 

tance between the attractor and the given image. The value of Aoi will provide 

an approximate value of a if the starting image is the given image itself. The 

approximate values of a are found to be 7.18 and 10.67 for Lena" and LFA" 

images respectively. 

Table 1: RMSE values between successive iterations using PIFS codes of "Lena" 

image  
Starting 
image ^O.IO •*0,1 ^1.2 ^2.3 ^3,4 ^4.5 ^5,6 ^6,7 ^7,8 ^8,9 ^9.10 
Lena 7.73 7.18 2.91 1.12 0.45 0.24 0.15 0.10 0.07 0.04 0.03 
Blank 7.86 X 43.93 32.05 19.72 11.30 6.25 3.48 1.97 1.13 0.66 
Rose 7.74 99.96 62.42 37.63 19.88 9.45 4.13 1.91 0.92 0.48 0.28 
LFA 7.74 66.47 41.59 23.07 11.26 4.97 2.13 0.97 0.48 0.27 0.17 
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Table 2: RMSE values between successive iterations using PIFS codes of "LFA" 

image  
Starting 
image A).10 A),l Al.l ^2.3 ^3.4 ^4,5 ^5.6 A6J A7,S ^8,9 
LFA 11.42 10.67 4.32 1.56 0.63 0.34 0.23 0.16 0.12 0.09 0.06 
Blank 11.48 X 53.78 36.51 21.87 12.70 7.39 4.28 2.46 1.42 0.84 
Rose 11.45 143.09 102.65 43.39 22.34 10.47 5.18 2.74 1.53 0.89 0.56 
Lena 11.43 64.95 45.50 27.23 13.38 5.66 2.36 1.09 0.60 0.38 0.26 

To judge the validity of the PIFS technique, the original and reconstructed images 

have also been checked visually. Figure 2, Figure 3 and Figure 4 are showing the 

original images of "Lena", "LFA" and "Rose" respectively. Figure 5 and Figure 6 

are showing the reconstructed images of "Lena" and "LFA" respectively. In both 

the cases the starting image is the "Rose" image. Both the reconstructed image are 

found to be of good quality. Also the compression ratios are found to be 10.5 and 

5.5 for "Lena" and "LFA" images respectively, using GA based PIFS technique [1]. 

Note that the compression ratio is other factors like image size, range block size, 

bits per pixel and the gray level variation present in the given image. 

The next section concludes the present article. 

7     Conclusions 

The upper bound of the difference, between the original image and the attractor 

evolved through its PIFS codes, is almost same as that in the IFS set up (Collage 

theorem [2]). The only difference is the contractivity factor which is eventually 

contractive in the case of PIFS compared to the strict contractivity in IFS. The 

present article provides an elaborate and direct proof for the existence of the at- 

tractor and the closeness of the attractor to the given image in the partitioned IFS 
scheme. 

In PIFS technique the estimates of all the range blocks are obtained assuming the 

self similarities present in the given image. The domain block which is most similar 

to a range block is named as appropriately matched domain block for that range 

block. The similarity between the range block and the domain block is measured 

by RMSE (or MSE). Thus the efficiency of PIFS technique depends on two factors. 
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The first one is the efficiency of the distortion measure and second one is the extent 

of similarity present in the given image. 

RMSE being a global measure has its own limitations. In this context one can 

think of a better and reliable measure which can make the PIFS technique more 

efficient. Regarding the second factor, it may so happen that there is hardly any 

domain block which is appropriately matched with the concerned range block. In 

other words, the domain block most close to a range block in the sense of similarity, 

may provide a quantitatively large distortion measure. This may lead to inefficient 

coding. This problem can be viewed as a limitation of the PIFS image compression 

technique. Thus, there is enormous scope for suggesting the specific theory which 

can make domain blocks more close to the range block in the sense of similarity 

and also with less distortion. 

The theory of PIFS technique is also applicable to one dimensional signals. In This 

context the technique has already been applied to code the fractal curves [7] and 

EEG signals [13]. Computational time and hence the computational cost of the 

PIFS scheme for gray level image compression is quite large. So, researches are 

carried out to reduce the computational time as well as computational cost [1, 14]. 

Also the PIFS codes may be used in other aspects of image processing. 
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Table Captions 

Table  1.     :   RMSE values between successive iterations using PIFS codes of 

"LENA" image image. 

Table 2.   : RMSE values between successive iterations using PIFS codes of "LFA" 

image image. 



Figure Captions 

1 (a) :    Mappings for IFS scheme 

1 (b) :    Mappings for domain blocks to range blocks in PIFS scheme 

2 : Original "Lena" image 

3 : Original "LFA" image 

4 : "Rose image 

5 : Decoded "Lena" image after 10 iterations using the starting image as Figure 4 

6 : Decoded "LFA" image after 10 iterations using the starting image as Figure 4 
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